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Deformation of a stretched polymer knot
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The static properties of a knotted polymer under a stretching forcef are studied by Monte Carlo simulations.
Chain lengths up toN582 and knot types of 01 , 31 , 41 , 51 , 61, and 81 are considered. Our simulation data
show that the scaling laws proposed by de Gennes and Pincus for a single linear chain under traction force still
hold for the knotted type polymers. That is, the average knot size under a forcef scales aŝRf&;RF

2 f at weak
tension forces while for strong forceŝRf&;RF

1/n f (1/n)21, where RF;Nnp24/15, n'3/5 is the usual self-
avoiding walk exponent andp is a topological invariant representing the aspect ratio~length to diameter! of a
knotted polymer at its maximum inflated state. Our results also show that the elastic modulus of a knotted
polymer is larger compared to an equal-length linear chain. More complex knots are in general stiffer. A simple
composite spring model is employed to derive the increase in stiffness of knots relative to the linear chain, and
the results agree well with the simulation data. Segregation of the crossings into a small tight region of the knot
structure at strong forces is also observed.

PACS number~s!: 61.41.1e, 83.10.Nn, 87.10.1e, 05.70.Fh
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I. INTRODUCTION

The interest in studying knotted polymers originates fro
their important relation to biological systems. For examp
DNA rings in bacteria take the form of a knotted ring, a
there are certain types of enzymes that can act on circ
DNA’s and produce different types of DNA knots@1–3#.
These proteins, RNA’s, and DNA’s are all polymers of bio
ogy origin. Thus investigations of knotted polymers can
of great help in understanding the behavior of ring DNA
Our understanding of the static and dynamical propertie
the physical knot system has progressed recently@4–7#, de-
spite the fact that great advances have been made in cl
fying knots and topological invariants in recent decad
@8–11#. Some efforts have also been made to relate the
pological invariants of knots to the static properties of t
knotted polymers. Quake@4# developed a phenomenologic
model of the effects of knot complexity on static and d
namic properties in terms of the number of essential cro
ings, C. The theory has been tested against computer si
lations, and agrees well with the radius of gyratio
calculated. Grosberget al. presented a mean field theory o
the statistical mechanics of ring polymers@5#, in which they
introduced a topological invariantp which is the aspect ratio
~length-to-diameter! of a knotted polymer at its maximum
inflated state. The expression for the effects of topolog
complexity on the variation of static chain conformatio
~such as the radius of gyration! has been confirmed explicitly
by our recent studies@7#. Stasiaket al. @12# performed ex-
periments in testing the electrophoretic mobility of DN
knots in which a linear relation between average cross
numbers of knots and their speed of migration was obser
These results from theories, simulations, and experiment
indicate that it is possible to relate the behaviors of static
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dynamic properties of different types of knotted polyme
with rather simple topological invariants. It should be not
that this statement is not always correct. We have dem
strated that the nonequilibrium relaxation dynamics of a
knotted polymer is found not to be in a simple relation w
C or p only @7,13#. These results show that the local top
logical hindrance plays a crucial role in untying a kn
through Brownian motions, and thus that knots should
classified into different groups based on their topologi
similarity and polynomial invariants@14#.

The physical properties of many biological molecule
such as DNAs, are strongly affected by their topologic
properties. There have been some related theoretical stu
on the elastic properties of linear DNA molecules associa
with their double strand and helical structures@15–17#, and
also in terms of the topological linkage number@18#. Such
theoretical work was motivated by recent advances in te
niques with optical tweezers, which can manipulate DNA
protein molecules in a rather well controlled way and ev
artificially tie up a DNA molecule to form a knot@19#, thus
allowing the possibility to investigate many of the physic
and even mathematical properties of knots experimenta
To probe topological effects on the static properties of kn
ted polymers is necessary in order to have a better un
standing of their physical behavior. In this work, we exte
our interest to a study of the deformations of knotted po
mers under stretching forces. This situation is likely to
encountered in knot polymers undergoing gel electropho
sis, under shear flow, or being manipulated by optical tw
zers. It is of great importance to study the mechanical
elastic responses of knotted molecules under external for
There has been some recentab initio calculation@20# on the
breaking strength of a linear polyethylene chain with a tref
knot in it ~not a closed loop ring polymer!; however, to our
knowledge, there is as yet no theory or simulation results
the elastic properties of knots. Here we perform Monte Ca
simulations for knots under a constant stretching force,
2895 ©2000 The American Physical Society
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investigate how the force laws are modified by the topolo
cal properties of the knots. We also construct a simple th
retical model to analyze the increase in stiffness of the po
mer due to the presence of knot structures. Since there a
experimental observations of this yet, our simulation res
should be helpful in a study of ring polymer topology, a
can also be compared with future experiments.

II. MODEL AND SIMULATION DETAILS

The polymer chain studied in this work is modeled
beads connected by stiff springs. The interactions betw
the nonbonded beads are through the square-well poten

Unb5H ` ~r ,s!

2« ~s<r ,ls!

0 ~ls<r !,

~1!

where« and s are the energy and size parameters, resp
tively andl51.5. The monomeric« ands are units used for
the reduced quantities for temperature and distances aT*
5kBT/« and R* 5R/s. The interactions between bonde
beads are represented by a cutoff harmonic spring pote
as

Ub5
1

2
ks2S r

s
21.2D 2

, 1.0,
r

s
<1.4. ~2!

The potential is infinite elsewhere. We have chosenks2/«
5400. The chain model is chosen to avoid bond cross
within the knotted chains. The system studied consists
single closed ring polymer ofN monomers ranging from 42
to 82. We study prime knot polymers of types 01 , 31 , 41 ,
51 , 61, and 81. Prime knots are knots that cannot be fa
tored into simpler knots, or in algebraic terms the polynom
invariant ~such as Alexander or Jones polynomials! of a
prime knot cannot be factorized into polynomials of simp
knots @11#. Figures 1~a!, 1~b!, and 1~c! ~the left hand side
parts! display knot diagrams of prime knots 01 , 31, and 71
respectively. The simulations are performed under the c
ditions of constant temperature, volume, and total numbe
beads. In the present study, the reduced temperatureT*
510 is chosen so that the system is in a good solvent reg

The initial configuration of the knot is generated by gro
ing the chain bead by bead to the desired length on a c
lattice. The subsequent motions of the chain is a continu
The trial moves employed for chains are bead displacem
motions @21#, which involve randomly picking a bead an
displacing it to a new position in the vicinity of the ol
position. The distance away from the original position
chosen with the probability that the condition of equal sa
pling of all points in the spherical shell surrounding the in
tial position must be satisfied. The new configurations res
ing from this move are accepted according to the stand
Metropolis acceptance criterion@22#. To simulate the stretch
ing force in the6z direction, the first bead is under an e
ternal potentialU5 f z1, and theM th (M5N/211) bead is
under an external potentialU52 f zM , wherez1 andzM are
the coordinates of these two beads. Figure 1 shows the s
matic representations of knots being stretched by forcf.
Runs for the same chain length at different stretching for
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are performed starting with the final configuration from
previous stretching force. All runs are equilibrated for se
eral million steps. Measurements for static properties suc
the knot size are taken over a period of 1–4 millions Mon
Carlo steps/monomer. The equilibrium mean size paralle
the direction of the stretching force is then measured, wh
is given by

^Rf&5^A~xM2x1!21~yM2y1!21~zM2z1!2& ~3!

where (x1 ,y1 ,z1) are the coordinates of the first monomer
the chain and (xM ,yM ,zM) are the coordinates of theMth

5(N/211)th monomer. The angular brackets^ & denote en-
semble average.

FIG. 1. Schematic representation of knots being stretched by
force f as composite spring systems.~a! Trivial knot 01. Left: cir-
cular trivial knot under tension. Right: system represented b
double spring system in parallel.~b! Trefoil 31. Left: picture of
trefoil under tension. Middle: schematic representation as stretc
of four strands, the crossing region is shaded. Right: compo
spring representation, the center line is rigidly fixed to the t
parallel strands.~c! Nontrivial knot under strong deformation, with
the same notations as in~b!.
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PRE 61 2897DEFORMATION OF A STRETCHED POLYMER KNOT
III. COMPOSITE SPRING MODEL FOR RING
POLYMERS UNDER TENSION

Our aim is to derive the change in the stiffness, or
effective spring constants of a ring polymer, with or witho
knot, when it is stretched. Before we proceed, let us re
the well-known force laws in the case of a linear long fle
ible chain given by Pincus@23# and de Gennes@24#. Accord-
ing to Pincus@23#, for a linear polymer chain ofN monomers
and monomer sizea, under an external forcef, the average
end-to-end displacement,^Rf& along the force direction can
be written in a scaling form as

^Rf&5RFF~RF /j!, ~4!

whereRF5aNn is the Flory radius of the free linear chain,j
is the tensile screening length@23,24#, and F(x) is some
dimensionless scaling function.j can be thought of as th
blob size formed within the chain at temperatureT under
stretching forcef with f j5kBT. RF andj are the two char-
acteristic lengths of the system. In the limit of weak forc
i.e. RF /j!1, Rf is expected to be linear inf. Therefore, the
polymer has a Hooke’s restoring force given by

^Rf&'
f

kBT
RF

25aN2nF, ~5!

where the dimensionless reduced forceF[ f a/(kBT) is in-
troduced for convenience. For the ideal case (n51/2), ^Rf&
is linear inN, which indicates that the tension force is tran
mitted along the backbone. However, in good solventsn
'3/5), ^Rf& is nonlinear inN at low forces for chains unde
traction. This is because the tension force is no longer tra
mitted along the backbone only, but also through interacti
between certain pairs of monomers. We believe this ef
will manifest itself in knotted type polymers, since they a
usually more compact than their equal-length counterpar

For a chain under a stronger external force, that
RF /j@1, F(x) is assumed to be proportional toxb, whereb
can be determined by the condition^Rf&;N. Thus the end-
to-end extension can be estimated to be

^Rf&'RF
1/nS f

kBTD (1/n)21

5aNF 1/n21. ~6!

In good solvents, wheren'3/5, ^Rf&} f 2/3, instead of the
linear Hooke’s law. We expect that these scaling laws w
also hold for knotted type ring polymers with sufficie
length, i.e., far from the tight knot limit. However, for th
knotted chains, extra interactions will emerge, and they
mainly from the topological constraints imposed upon
chains.

Now consider the simplest ring polymer, the trivial kn
01, which also consists ofN monomers. Let the stretchin
forces act on the first and (N/211)th monomers as in ou
simulation. It is obvious that this circular chain will be stiffe
than the linear chain of the same length, simply beca
there are two strands to balance the samef. One can sche-
matically represent the trivial knot under tension as
spring system depicted in Fig. 1~a!. Simple calculation gives
the size of the 01 knot under a stretching forcef as
e
t
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R015aS N

2 D 2n F
2

5
1

2112n
Rf

linear ~7!

in the weak force regime, whereRf
linear is the size of a linear

chain ofN monomers under the tensionf as given in Eq.~5!.
For the idealn51/2 case, the extension is four times le
than that of a linear chain, which can be easily understo
there are two springs of twice the stiffness~length of each
strand is halved!. For stronger forces, a similar calculatio
using the Pincus law for the springs gives

R015
1

21/n
Rf

linear ~8!

in the Pincus regime.
For the case of nontrivial prime knots, such as 31 , 41,

etc., the situation is more complicated; nevertheless one
still proceed for a rough estimation. Under the action of t
stretching force, one expects the crossings will be more
less concentrated around the middle portion of the knot
depicted schematically in Fig. 1~b!. In the weak force re-
gime, the knot is not strongly deformed, the portion of se
ments spend in the crossing region is comparable to thos
the noncrossing regions@the middle of Fig. 1~b!#. Thus, on
average, there are roughlyN/4 monomers on each side of th
noncrossing regions. Again view the system as a compo
spring system as shown, with the crossing region represe
schematically by a rigid line connecting the two strands, o
can estimate the size of the knot to be

Rknot'2aS N

8 D 2n F
2

5
1

26n
Rf

linear . ~9!

For the strong deformation Pincus regime, the crossings
more tightly located in a smaller crossing region@see Fig.
1~c!#, and hence the average portion of segments spend in
crossing region would be fewer and more sensitive to
value ofC of the knot. One can estimate a lower bound of
size by a similar calculation as above@Fig. 1~b!#; however,
using the Pincus force law, one obtains

Rknot.
1

2111/n
Rf

linear . ~10!

In order to obtain an order of magnitude estimate, one
make a bold assumption that about 1/3 of segments are in
crossing region on average as schematically depicted in
middle of Fig. 1~c!, then one obtains

Rknot;
1

3

1

21/n21
Rf

linear . ~11!

Using the best known value of the self-avoiding walk exp
nent@25# n.0.588 for polymers in good solvent condition
these predictions will be compared with our simulation d
in Sec. IV.
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IV. RESULTS AND DISCUSSIONS

We have performed Monte Carlo simulations to inves
gate the dependence of the average knot size on the stre
ing force for the knotted polymers. Figure 2~a! shows the
variation of^Rf& versusf for the trivial circular knot (01) at
different chain lengths. Since they are of the same type
knots, the topological effect must be similar. Thus we exp
their sizes will obey the same scaling laws as the linear ch
does. In Fig. 2~b! the scaled mean size^Rf&/N

n is plotted as
a function off Nn for various chain lengths. The deformatio

FIG. 2. ~a! Mean size of knot polymer~in unit of s) vs the
stretching force~in unit of kBT/s) for the 01 trivial knot at various
chain lengths: (j) N542, (d) N560, and (m) N582. ~b!
Same data as in~a! but plotted withRf /Nn vs f Nn. Solid lines are
slopes of 1 and 2/3 from Eqs.~5! and ~6!. Scaling curves for the
linear chain are denoted by the dotted lines which have the sa
slopes as the solid lines.
-
ch-

of
t

in

of the chain obeys the linear Hooke’s law in the weak for
regime, and displays a Pincus scaling behavior in the str
force regime. As in the case of a linear chain, the knot w
the longer chain length reaches the scaling law at wea
forces @21#. The scaling curve for the linear chain is als
shown for comparison. Note that it can clearly be seen t
the entire scaling curve for the knotted polymers has shif
to the stronger force region, i.e. the knotted polymers
more resistant to external forces than the linear polymers
the weak deformation regime, our data indicate that the s
of the circular polymer is about 4.5 times less as compare
the linear polymer under the same force and with the sa

FIG. 3. ~a! Mean knot size~in unit of s) vs the stretching force
~in unit of kBT/s) for the 31 knot at various chain lengths
(j) N542, (d) N560, and (m) N582. ~b! Same data as in~a!
but plotted with^Rf&/N

n vs f Nn. Solid and dotted lines have th
same meaning as in Fig. 2.
e
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PRE 61 2899DEFORMATION OF A STRETCHED POLYMER KNOT
number of monomers. This is in good agreement with
prediction using the composite spring model in Eq.~7! with
2112n.4.6. In the strong deformation Pincus regime, t
increase in stiffness is less, our data give about a factor of
increase which also agrees well with the predicted value
21/n.3.25 in Eq.~8!. No universal scaling law applies fo
the very strong force regime, and the deformation beha
becomes model dependent as significant bond stretching
curs in this regime.

Trefoils of different lengths under stretch is also inves
gated. Figure 3~a! shows thê Rf& versusf for the 31 knot at
different chain lengths. The scaled mean size^Rf&/N

n is
plotted as a function off Nn for various chain lengths a
shown in Fig. 3~b!. Again the deformation of the chain obey
Hooke’s law and the Pincus force law in the weak and stro
force regimes, respectively. The scaling curve for the kno
polymers shifts even further into the stronger force reg
relative to the linear chain. This suggests that the more c
plex knot is more resistant to external forces for knots of
same lengths. In the weak deformation regime, the size
the trefoil is about 11.5 times less than that of the line
chain, which is close to the predicted value of 26n'11.54
from Eq. ~9!. In the strong deformation regime, the size
about five time less, which is consistent with the upp
bound of 2111/n'6.4 from Eq.~10!, and even agrees reaso
ably well with the crude estimation of 3321/n21'4.88 from
Eq. ~11!. These results are summarized in Table I.

To study the topological effects of different knot type
we performed simulations for various prime knots with t
same length (N560). As shown by Grosberget al. @5#, the
topological invariantp, given by the ratio of the contou
length to the diameter of the knot in its maximally inflate
state, is a good quantity to characterize the complexity o
knot. The maximally inflated state of a knot is achieved
imagining that the polymer knot is made of a balloon tub
which is then blown up maximally such that the differe
segments of the balloon are touching each other.p is then the
ratio of the contour length of the inflated balloon tube to
diameter. The values ofp were calculated by Monte Carl
simulations by Katritchet al. @6# for various prime knots,
and these values ofp will be used in the present study. Da
in Fig. 4~a! indicate that the deformation decreases as
complexity in knots increases for the same stretching forcf.
This again indicates that the elastic modulus of a less c
plex knot is less, and will be more susceptible to exter
forces. In Fig. 4~b! the scaled mean knot size^Rf&/p

24/15 is
plotted as a function off p24/15 for various types of knotted
polymers. Though the data are somewhat scattered in
weak force region, they seem to obey the linear scaling
approximately. The width of the crossover regime betwe

TABLE I. Comparison of the composite spring model pred
tions with the simulation data for the increase in stiffness relative
the linear chain of the same length.n50.588 is used in the theo
retical results.

Linear regime Pincus regime
Knot Theory Data Theory Data

01 2112n'4.52 4.660.4 21/n'3.25 3.160.3
31 26n'11.54 11.060.6 3321/n21'4.88 4.760.3
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linear and Pincus behavior is fairly narrow, as in the case
the linear chain@21#. For strong forces, the Pincus scalin
rule applies and the elastic response is more nonlinear.

To investigate the effect of distinct knot types on the el
tic response, other prime knots of types 41 , 51 , 61, and 81
are also simulated. As in the case of a linear flexible polym
chain, we propose that the global equilibrium elastic prop
ties of a knot depend on the global shape deformation r
tive to the dimension of the knot under no external force. W
denote the free Flory radius of the knot under no force
RF ; there have been scaling results@4,5# for RF in terms of

o

FIG. 4. ~a! Mean knot size~in unit of s) vs the stretching force
~in unit of kBT/s) for different types of knots at the same cha
length (N560): (j) 31 , (s) 41 , (m) 51 , (,) 61, and
(L) 81. ~b! Same data as in~a! but plotted withRf /pa vs f pa,
wherea524/15. Solid lines are slopes of 1 and 2/3.
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the topological invariants that characterize the complexity
the knot. As shown by Grosberget al. @5# and verified by our
previous simulation@7#, RF;Nnp24/15. Thus the mean kno
size is proposed to have the same scaling form as given
Eq. ~4! with the corresponding linear and Pincus regim
given by Eqs.~5! and ~6! respectively. Figure 5 shows th
scaled mean size in unit of the free Flory radius of the k
under no force (̂Rf&/RF) vs the scaled stretching forc
( f RF) for different types of knots at various chain length
As we can see, the data scale reasonably well. The sca
relations of the linear chains also hold for knotted type po
mers, as long as a correct scaling relation for the free ra
of knotted polymers is defined. The result is consistent w
previous studies, in that the topological effects of the knot
structures on the static properties can be accounted for w
rather simple relation of their topological invariants@7#.

Figures 6~a! and 6~b! are snapshots of the equilibrium
conformations for 31 and 81 knots stretched with six differ-
ent values of forces. The deformations of the 31 knot are
obviously stronger than that of the 81 knot under the same
force. Note that at weak force regimes, the distributions
the crossings are quite uniform; however, as forces incre
the crossings tend to segregate to a small region. The se
gation region can move up and down within the knot due
Brownian motions. At a very strong force, the crossings
come very tight and stay in a certain part of the knot. To g
an idea of the generic picture of the conformations of
knots at various regimes of tension, one can compare
values off in Fig. 6 with the simulation data, such as tho
shown in Fig. 3. For the 31 knots in Fig. 6~a!, the conforma-
tions at f 51 and 4 lie in the linear regime; those atf 510
and 20 are in the Pincus regime, while the last two conf
mations are in the strongly stretched model dependent

FIG. 5. Scaled knot size (^Rf&/RF) vs the scaled stretching
force f RF ~in unit of kBT) for different types of knots at variou
chain lengths.RF;Nnp24/15. Symbols: (1)01 , N542, (3)01 ,
N560; ~filled L! 01 , N582; (j) 31 , N542; (d) 31 , N560;
(m) 31 , N582; (.) 41 , N542; (L) 41 , N560; (h) 51 , N
542; (* ) 51 , N560; (n) 61 , N560; (,) 81 , N560.
f
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gime. For the 81 knot in Fig. 6~b!, the first three configura-
tions are in the linear regime, followed by two conformatio
in the Pincus regime and a final one in the model depend
regime. As expected, a more complex knot is less deform
under the same force. This can be understood intuitively
follows: in the absence of an external force, knots with mo
essential crossings will have more segments spending tim
the crossing region@see the middle of Fig. 1~b!#. As an ex-
ternal stretching force is applied to deform the knot, it has
overcome a stronger effective ‘‘friction’’ or hindrance for th
more complex knot, and hence more complex knots
stiffer.

V. CONCLUDING REMARKS

In this work, we have performed Monte Carlo simulatio
to investigate the static behaviors of knotted polymers un
a stretching force in good solvents. The polymers were sim
lated in a continuous space using a bead-spring chain mo
The nonbonded interactions are square-well potentials,
the bonded beads interact through a cutoff harmonic sp
potential. The chain model is chosen to avoid a bond cro
ing within the knotted chains. Chain lengths fromN542 to
82 and prime knots of 01 , 31 , 41 , 51 , 61, and 81 are con-
sidered. Our Monte Carlo results for the static quantity ve

FIG. 6. The snapshots of the equilibrium conformations
knots of N560 being stretched at scaled forcef s/(kBT)
51, 4, 10, 20, 50, and 100.~a! 31 knot; the six configurations for
increasingf correspond to the regimes as follows: linear, line
Pincus, Pincus, model dependent, and model dependent, re
tively. ~b! 81 knot; configurations correspond to linear, linear, li
ear, Pincus, Pincus, and model dependent regimes for increasf.
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PRE 61 2901DEFORMATION OF A STRETCHED POLYMER KNOT
fied the fact that the scaling laws proposed by de Gennes
Pincus for linear chains under traction force also hold
knotted type polymers. That is, the elastic response dep
only on the relative deviation of the knot from its und
formed dimension, and a scaling law in the form of Eq.~4!
holds. In particular, the knot size scales as^Rf&;RF

2 f at
weak tension forces, and as^Rf&;RF

1/n f (1/n)21 for strong
forces withRF;Nnp24/15. One expects these scaling resu
would be valid as long as the knot is far from the tight kn
limit, or provided that the chain is long enough so that u
versal scaling results apply. On the other hand, signific
bond stretching occurs under extremely strong forces
when the knot is tight; the elastic response depends on
particular interaction potential between the monomers,
hence the deformation behavior becomes model-depen
and no universal scaling laws apply. Furthermore, our res
show that for the same number of beads, all scaling curve
knotted polymers shift to a stronger force region. This me
that the elastic modulus of a knotted polymer is larger
compared to a linear chain of the same length. Based o
simple model that represents the knot by a composite sp
o

o-
nd
r
ds

t
-
nt
r

he
d
nt

ts
of
s
s
a
g

system, a decrease in the sizes of trivial and nontrivial kn
was derived. Although the model is crude and could not e
distinguish different nontrivial knots, its prediction agre
very well quantitatively for the trivial knot. Even for the
nontrivial trefoil, this simple model still gives reasonab
predictions when compared to the simulation data. For kn
ted polymers of the same length, the deformation decrea
as the complexity of the knots increases at the same stre
ing force. More complex knots are stiffer. We have also o
served that at very strong forces, the crossings tend to
regate into a small region of the knot structure. We hope
results can stimulate further experimental and theoret
studies on knotted molecules.
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