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Deformation of a stretched polymer knot
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The static properties of a knotted polymer under a stretching faaoe studied by Monte Carlo simulations.
Chain lengths up ttN=82 and knot types of 0 3, 4,, 5;, 6;, and § are considered. Our simulation data
show that the scaling laws proposed by de Gennes and Pincus for a single linear chain under traction force still
hold for the knotted type polymers. That is, the average knot size under af fecaées a:éRf)vaﬁf at weak
tension forces while for strong force®R;)~RY"f =1 where Re~N"p~ %5 1»~3/5 is the usual self-
avoiding walk exponent anglis a topological invariant representing the aspect rd¢ingth to diametgrof a
knotted polymer at its maximum inflated state. Our results also show that the elastic modulus of a knotted
polymer is larger compared to an equal-length linear chain. More complex knots are in general stiffer. A simple
composite spring model is employed to derive the increase in stiffness of knots relative to the linear chain, and
the results agree well with the simulation data. Segregation of the crossings into a small tight region of the knot
structure at strong forces is also observed.

PACS numbgs): 61.41+e, 83.10.Nn, 87.16-e, 05.70.Fh

[. INTRODUCTION dynamic properties of different types of knotted polymers
with rather simple topological invariants. It should be noted
The interest in studying knotted polymers originates fromthat this statement is not always correct. We have demon-
their important relation to biological systems. For example strated that the nonequilibrium relaxation dynamics of a cut
DNA rings in bacteria take the form of a knotted ring, andknotted polymer is found not to be in a simple relation with
there are certain types of enzymes that can act on circulaC or p only [7,13]. These results show that the local topo-
DNA's and produce different types of DNA knofd—-3|.  logical hindrance plays a crucial role in untying a knot
These proteins, RNA'’s, and DNA's are all polymers of biol- through Brownian motions, and thus that knots should be
ogy origin. Thus investigations of knotted polymers can beclassified into different groups based on their topological
of great help in understanding the behavior of ring DNA'’s. similarity and polynomial invariantgl4].
Our understanding of the static and dynamical properties of The physical properties of many biological molecules,
the physical knot system has progressed recddthy7], de- such as DNAs, are strongly affected by their topological
spite the fact that great advances have been made in clasgroperties. There have been some related theoretical studies
fying knots and topological invariants in recent decadesn the elastic properties of linear DNA molecules associated
[8—11]. Some efforts have also been made to relate the towith their double strand and helical structufd$—17, and
pological invariants of knots to the static properties of thealso in terms of the topological linkage numié8]. Such
knotted polymers. Quakel] developed a phenomenological theoretical work was motivated by recent advances in tech-
model of the effects of knot complexity on static and dy- niques with optical tweezers, which can manipulate DNA or
namic properties in terms of the number of essential crossprotein molecules in a rather well controlled way and even
ings, C. The theory has been tested against computer simuartificially tie up a DNA molecule to form a kndtl9], thus
lations, and agrees well with the radius of gyrationsallowing the possibility to investigate many of the physical
calculated. Grosbergt al. presented a mean field theory on and even mathematical properties of knots experimentally.
the statistical mechanics of ring polym¢Hg], in which they  To probe topological effects on the static properties of knot-
introduced a topological invariaptwhich is the aspect ratio ted polymers is necessary in order to have a better under-
(length-to-diametgrof a knotted polymer at its maximum standing of their physical behavior. In this work, we extend
inflated state. The expression for the effects of topologicabur interest to a study of the deformations of knotted poly-
complexity on the variation of static chain conformationsmers under stretching forces. This situation is likely to be
(such as the radius of gyratiphas been confirmed explicitly encountered in knot polymers undergoing gel electrophore-
by our recent studief7]. Stasiaket al. [12] performed ex- sis, under shear flow, or being manipulated by optical twee-
periments in testing the electrophoretic mobility of DNA zers. It is of great importance to study the mechanical or
knots in which a linear relation between average crossinglastic responses of knotted molecules under external forces.
numbers of knots and their speed of migration was observedhere has been some receiit initio calculation[20] on the
These results from theories, simulations, and experiments aireaking strength of a linear polyethylene chain with a trefoil
indicate that it is possible to relate the behaviors of static anétnot in it (not a closed loop ring polymgrhowever, to our
knowledge, there is as yet no theory or simulation results for
the elastic properties of knots. Here we perform Monte Carlo
*Electronic address: pylai@spl1.phy.ncu.edu.tw simulations for knots under a constant stretching force, and
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investigate how the force laws are modified by the topologi-
cal properties of the knots. We also construct a simple theo-

retical model to analyze the increase in stiffness of the poly-

mer due to the presence of knot structures. Since there are ni T
experimental observations of this yet, our simulation results E % ROI
should be helpful in a study of ring polymer topology, and

can also be compared with future experiments. i

II. MODEL AND SIMULATION DETAILS ¢

The polymer chain studied in this work is modeled as
beads connected by stiff springs. The interactions between
the nonbonded beads are through the square-well potentials

(a)

®  (r<o)
Up=4 —& (osr<io) (1)

0 (No=<T), \/\

wheree and o are the energy and size parameters, respec-
tively and\ =1.5. The monomerie ando are units used for

the reduced quantities for temperature and distanceB*as
=kgT/e and R*=R/o. The interactions between bonded
beads are represented by a cutoff harmonic spring potentia (b)
as

knot

1 2 r
Up=5ko? ——12| , 10<-<14. (2)

i R
The potential is infinite elsewhere. We have chokei/e knot
=400. The chain model is chosen to avoid bond crossing RARARRA R
within the knotted chains. The system studied consists of a
single closed ring polymer dfl monomers ranging from 42 i/
to 82. We study prime knot polymers of types,B;, 44,
5,, 64, and 8. Prime knots are knots that cannot be fac-
tored into simpler knots, or in algebraic terms the polynomial
invariant (such as Alexander or Jones polynomjiatf a ©
prime knot cannot be factorized into polynomials of simpler
knots[11]. Figures 1a), 1(b), and Xc) (the left hand side FIG. 1. Schematic representation of knots being stretched by the
part9 display knot diagrams of prime knots 03;, and 7, force f as composite spring systenis) Trivial knot 0;. Left: cir-
respectively. The simulations are performed under the coreular trivial knot under tension. Right: system represented by a
ditions of constant temperature, volume, and total number oflouble spring system in parallelb) Trefoil 3;. Left: picture of
beads. In the present study, the reduced temperdftire trefoil under tension. Middle: schematic representation as stretching
=10 is chosen so that the system is in a good solvent regimef four strands, the crossing region is shaded. Right: composite
The initial configuration of the knot is generated by grow- Spring representation, the center line is rigidly fixed to the two
ing the chain bead by bead to the desired length on a cubiearallel strands(c) Nontrivial knot under strong deformation, with
lattice. The subsequent motions of the chain is a continuunih® same notations as ib).
The trial moves employed for chains are bead displacement ) ) ] . .
motions[21], which involve randomly picking a bead and are performed starting with the final configuration from a
displacing it to a new position in the vicinity of the old Previous stretching force. All runs are eqwhbrateq for sev-
position. The distance away from the original position is€ral million steps. Measurements for static properties such as
chosen with the probability that the condition of equal samthe knot size are taken over a period of 1-4 millions Monte
pling of all points in the spherical shell surrounding the ini- Carlo steps/monomer. The equilibrium mean size parallel to
tial position must be satisfied. The new configurations resultthe direction of the stretching force is then measured, which
ing from this move are accepted according to the standart$ given by
Metropolis acceptance criterig@2]. To simulate the stretch-
ing force in the*z direction, the first bead is under an ex- R)=(Vxm=x)*+(ymu—yn)*+(zu—21%) (3
ternal potentiall =fz;, and theMth (M=N/2+1) bead is
under an external potentibl= —fz,,, wherez, andz,, are  where §,,y,,z,) are the coordinates of the first monomer in
the coordinates of these two beads. Figure 1 shows the schie chain and Xy, ,yu ,zy) are the coordinates of thigl™"
matic representations of knots being stretched by fdrce =(N/2+1)" monomer. The angular brackets denote en-
Runs for the same chain length at different stretching forcesemble average.
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IIl. COMPOSITE SPRING MODEL FOR RING

N\‘2*F 1
POLYMERS UNDER TENSION ROi=a

2

_ _ =  plinear
E_ 21+2va (7)

Our aim is to derive the change in the stiffness, or the

effective spring constants of a ring polymer, with or without .

H Inear ; H H
knot, when it is stretched. Before we proceed, let us recall’ the weak force regime, Whe@f 1S the.3|ze .Of a linear
the well-known force laws in the case of a linear long ﬂex-ChaIn OfN monomers under the tensm_las given in I_Eq(5).
ible chain given by Pincug23] and de Gennei@4]. Accord- For the |dealu_: 1/2 case, the extension is fqur times less
ing to Pincug 23], for a linear polymer chain df monomers than that of a Ilngar chain, \_/vhlch can be easily understood:
and monomer siz@, under an external forck the average there are two springs of twice the stiffnedength of each

end-to-end displacemertR;) along the force direction can strand is halved For stronger forces, a similar calculation
be written in a scaling fo;m as using the Pincus law for the springs gives

<Rf>:RF(D(RF/§)! (4) R01=$lemear (8)

whereRg=aN" is the Flory radius of the free linear chai,

is the tensile screening lengf23,24], and ®(x) is some
dimensionless scaling functio. can be thought of as the
blob size formed within the chain at temperatdreunder
stretching forcd with f¢=kgT. Rg and ¢ are the two char-
acteristic lengths of the system. In the limit of weak force,
i.e.Re/é<1, Ry is expected to be linear ifh Therefore, the
polymer has a Hooke's restoring force given by

in the Pincus regime.
For the case of nontrivial prime knots, such as 3,
etc., the situation is more complicated; nevertheless one can
still proceed for a rough estimation. Under the action of the
stretching force, one expects the crossings will be more or
less concentrated around the middle portion of the knot, as
depicted schematically in Fig.(). In the weak force re-
f gime, the knot is not strongly deformed, the portion of seg-
(R)~ —=RZ=aN?"F, (5) ments spend_in the c_:rossing r.egion is c_omparable to those in
kgT the noncrossing regiorfshe middle of Fig. 1b)]. Thus, on
average, there are roughy/4 monomers on each side of the
where the dimensionless reduced fotgefa/(kgT) is in-  noncrossing regions. Again view the system as a composite
troduced for convenience. For the ideal case=(/2), (Rs)  spring system as shown, with the crossing region represented
is linear inN, which indicates that the tension force is tranS-schematica”y by a ng|d line Connecting the two strands, one
mitted along the backbone. However, in good solvents ( can estimate the size of the knot to be
~3/5), (Ry) is nonlinear inN at low forces for chains under
traction. This is because the tension force is no longer trans-
mitted along the backbone only, but also through interactions RKNOLL 24
between certain pairs of monomers. We believe this effect
will manifest itself in knotted type polymers, since they are
usually more compact than their equal-length counterparts.ror the strong deformation Pincus regime, the crossings are
For a chain under a stronger external force, that ismore tightly located in a smaller crossing regitsee Fig.
Re/é>1, ®(x) is assumed to be proportionalB, whereb  1(c)], and hence the average portion of segments spend in the
can be determined by the conditigR;)~N. Thus the end-  crossing region would be fewer and more sensitive to the
to-end extension can be estimated to be value ofC of the knot. One can estimate a lower bound of its
size by a similar calculation as abojfig. 1(b)]; however,

N

8

2v
Foo1 .
5 = S0 lelnear_ 9)

£\ @n-1 . ) .
(Rf>~R}:”’(—) —aNFY1 ©) using the Pincus force law, one obtains
kgT
213 knot: 1 linear
In good solvents, where~3/5, (R;) > instead of the RS —— R, (10)

1+1/
linear Hooke’s law. We expect that these scaling laws will 27

also hold for knotted type ring polymers with sufficient
length, i.e., far from the tight knot limit. However, for the In order to obtain an order of magnitude estimate, one can
knotted chains, extra interactions will emerge, and they aréhake a bold assumption that about 1/3 of segments are in the
mainly from the topological constraints imposed upon thecrossing region on average as schematically depicted in the
chains. middle of Fig. 1c), then one obtains

Now consider the simplest ring polymer, the trivial knot
04, which also consists ol monomers. Let the stretching '
forces act on the first and\{2+ 1)th monomers as in our RKknot_ 3 l/V71F2',<”‘e"j‘r. (11
simulation. It is obvious that this circular chain will be stiffer 2
than the linear chain of the same length, simply because
there are two strands to balance the sdm@ne can sche- Using the best known value of the self-avoiding walk expo-
matically represent the trivial knot under tension as thenent[25] »=0.588 for polymers in good solvent conditions,
spring system depicted in Fig(a). Simple calculation gives these predictions will be compared with our simulation data
the size of the @ knot under a stretching fordeas in Sec. IV.
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FIG. 2. (8 Mean size of knot polymefin unit of o) vs the FIG. 3. (a) Mean knot sizdin unit of ) vs the stretching force
strchhlng forcdin unit of kgT/a) for the O, trivial knot at various (in unit of kgT/&) for the 3, knot at various chain lengths:
chain lengths: W) N=42, (®) N=60, and &) N=82. (b  (m) N=42, (@) N=60, and &) N=82.(b) Same data as ifa)
Same data as ife) but plotted withR;/N” vs fN". Solid lines are )¢ piotted with(R;)/N” vs N”. Solid and dotted lines have the
slopes of 1 and 2/3 from Eq$5) and (6). Scaling curves for the ¢5me meaning as in Fig. 2.

linear chain are denoted by the dotted lines which have the same

slopes as the solid lines. _ ) _
of the chain obeys the linear Hooke’s law in the weak force

IV. RESULTS AND DISCUSSIONS regime, and displays a Pincus scaling behavior in the strong
force regime. As in the case of a linear chain, the knot with
We have performed Monte Carlo simulations to investi-the longer chain length reaches the scaling law at weaker
gate the dependence of the average knot size on the stretdierces[21]. The scaling curve for the linear chain is also
ing force for the knotted polymers. Figuréa® shows the shown for comparison. Note that it can clearly be seen that
variation of(R;) versusf for the trivial circular knot (Q) at  the entire scaling curve for the knotted polymers has shifted
different chain lengths. Since they are of the same type ofo the stronger force region, i.e. the knotted polymers are
knots, the topological effect must be similar. Thus we expectore resistant to external forces than the linear polymers. In
their sizes will obey the same scaling laws as the linear chaithe weak deformation regime, our data indicate that the size
does. In Fig. P) the scaled mean siZ&;)/N” is plotted as  of the circular polymer is about 4.5 times less as compared to
a function off N” for various chain lengths. The deformation the linear polymer under the same force and with the same
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TABLE |. Comparison of the composite spring model predic- 30 T I T T T I T T T T
tions with the simulation data for the increase in stiffness relative to | [ |
the linear chain of the same length=0.588 is used in the theo- (a) o
retical results. o5 | n s

o
Linear regime Pincus regime i u e ©
Knot Theory Data Theory Data 20 2 o -
0, 212~ 452  4.6:04 2~3.25 3.1:0.3 | n v
3, 26v~1154 11.:0.6 3x2Y¥"1'~488 4.70.3 A 15 o ©
o i A T
o 5 v
o , - o
number of monomers. This is in good agreement with our V A ©
prediction using the composite spring model in Eg. with 10F - v 7]
2172v=46. In the strong deformation Pincus regime, the | o
increase in stiffness is less, our data give about a factor of 3.: 'Q
increase which also agrees well with the predicted value ol 5 S ]
217=3.25 in Eq.(8). No universal scaling law applies for
the very strong force regime, and the deformation behavior . . . . .
becomes model dependent as significant bond stretching oc 0 ' . ' . '
curs in this regime. 0 20 40 60 80 100

Trefoils of different lengths under stretch is also investi- f
gated. Figure @ shows thg R;) versusf for the 3; knot at
different chain lengths. The scaled mean s{&)/N” is 100

plotted as a function of N” for various chain lengths as
shown in Fig. 8b). Again the deformation of the chain obeys
Hooke’s law and the Pincus force law in the weak and strong
force regimes, respectively. The scaling curve for the knottec
polymers shifts even further into the stronger force region
relative to the linear chain. This suggests that the more com
plex knot is more resistant to external forces for knots of the
same lengths. In the weak deformation regime, the size oz
the trefoil is about 11.5 times less than that of the linear
chain, which is close to the predicted value ¢#211.54
from Eq. (9). In the strong deformation regime, the size is
about five time less, which is consistent with the upper
bound of 2*~6.4 from Eq.(10), and even agrees reason-
ably well with the crude estimation 0f32'*~1~4.88 from
Eqg. (11). These results are summarized in Table I.

To study the topological effects of different knot types,
we performed simulations for various prime knots with the
same length l=60). As shown by Grosberet al. [5], the
topological invariantp, given by the ratio of the contour
length to the diameter of the knot in its maximally inflated fp
state, is a good quantity to characterize the complexity of a
knot. The maximally inflated state of a knot is achieved by FIG. 4. (a) Mean knot siz€in unit of o) vs the stretching force
|mag|n|ng that the polymer knot is made of a balloon tube,(ln unit of kBT/O') for different types of knots at the same chain
which is then blown up maximally such that the different'ength (N=60): (W) 3,, (O) 4,, (A) 5;, (V) 6;, and
segments of the balloon are touching each othé then the  (¢) 81 (b) Same data as ife) but plotted withR;/p® vs fp?,
ratio of the contour length of the inflated balloon tube to itsWherea=—4/15. Solid lines are slopes of 1 and 2/3.
diameter. The values gf were calculated by Monte Carlo
simulations by Katritchet al. [6] for various prime knots, linear and Pincus behavior is fairly narrow, as in the case of
and these values @f will be used in the present study. Data the linear chain21]. For strong forces, the Pincus scaling
in Fig. 4@ indicate that the deformation decreases as theule applies and the elastic response is more nonlinear.
complexity in knots increases for the same stretching frce  To investigate the effect of distinct knot types on the elas-
This again indicates that the elastic modulus of a less contic response, other prime knots of typeg, 6, 6;, and §
plex knot is less, and will be more susceptible to externakre also simulated. As in the case of a linear flexible polymer
forces. In Fig. 4b) the scaled mean knot siz&;)/p~#*®is  chain, we propose that the global equilibrium elastic proper-
plotted as a function ofp~*1® for various types of knotted ties of a knot depend on the global shape deformation rela-
polymers. Though the data are somewhat scattered in théve to the dimension of the knot under no external force. We
weak force region, they seem to obey the linear scaling rulelenote the free Flory radius of the knot under no force by
approximately. The width of the crossover regime betweerRg ; there have been scaling resyls5] for Rg in terms of

<Rp/p 415

0.1 1 10
-4/15
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FIG. 5. Scaled knot size(R;)/Rg) vs the scaled stretching
force fRg (in unit of kgT) for different types of knots at various
chain lengths Re~N*p~#%% Symbols: ¢)0;, N=42, (X)0,,
N=60; (filled ©)0;, N=82; (W) 3,, N=42; (®) 3;, N=60; (% @%
=42; (*) 5;, N=60; (A) 6,, N=60; (V) 8;, N=60.

the topological invariants that characterize the complexity of FIG. 6. The snapshots of the equilibrium conformations for

the Knot. A,S Shown by GrOSbengﬂ'lk[F] and verified by our knots of N=60 being stretched at scaled forcio/(kgT)
previous simulatior 7], Re~N"p~"™. Thus the mean knot _1 4 19 20, 50, and 1008) 3, knot; the six configurations for
size is proposed to have the same scaling form as given Bycreasingf correspond to the regimes as follows: linear, linear,
Eg. (4) with the corresponding linear and Pincus regimespincus, Pincus, model dependent, and model dependent, respec-
given by Eqgs.(5) and (6) respectively. Figure 5 shows the tively. (b) 8, knot; configurations correspond to linear, linear, lin-
scaled mean size in unit of the free Flory radius of the knofar, Pincus, Pincus, and model dependent regimes for increfasing
under no force (R¢)/Rg) vs the scaled stretching force
(fRg) for different types of knots at various chain lengths. gime. For the § knot in Fig. b), the first three configura-
As we can see, the data scale reasonably well. The scalingbns are in the linear regime, followed by two conformations
relations of the linear chains also hold for knotted type poly-in the Pincus regime and a final one in the model dependent
mers, as long as a correct scaling relation for the free radiugegime. As expected, a more complex knot is less deformed
of knotted polymers is defined. The result is consistent withunder the same force. This can be understood intuitively as
previous studies, in that the topological effects of the knottedollows: in the absence of an external force, knots with more
structures on the static properties can be accounted for with@ssential crossings will have more segments spending time in
rather simple relation of their topological invarian@. the crossing regiofisee the middle of Fig.(b)]. As an ex-
Figures 6a) and Gb) are snapshots of the equilibrium ternal stretching force is applied to deform the knot, it has to
conformations for 3 and 8, knots stretched with six differ- overcome a stronger effective “friction” or hindrance for the
ent values of forces. The deformations of the 3ot are more complex knot, and hence more complex knots are
obviously stronger than that of the &not under the same stiffer.
force. Note that at weak force regimes, the distributions of
the crossings are quite uniform; however, as forces increase,
the crossings tend to segregate to a small region. The segre-
gation region can move up and down within the knot due to In this work, we have performed Monte Carlo simulations
Brownian motions. At a very strong force, the crossings beto investigate the static behaviors of knotted polymers under
come very tight and stay in a certain part of the knot. To givea stretching force in good solvents. The polymers were simu-
an idea of the generic picture of the conformations of thdated in a continuous space using a bead-spring chain model.
knots at various regimes of tension, one can compare th€he nonbonded interactions are square-well potentials, and
values off in Fig. 6 with the simulation data, such as thosethe bonded beads interact through a cutoff harmonic spring
shown in Fig. 3. For the 3knots in Fig. a), the conforma- potential. The chain model is chosen to avoid a bond cross-
tions atf=1 and 4 lie in the linear regime; those fat 10  ing within the knotted chains. Chain lengths frow=42 to
and 20 are in the Pincus regime, while the last two confor-82 and prime knots of 0 3, 4,, 5;, 64, and § are con-
mations are in the strongly stretched model dependent residered. Our Monte Carlo results for the static quantity veri-

V. CONCLUDING REMARKS
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fied the fact that the scaling laws proposed by de Gennes argystem, a decrease in the sizes of trivial and nontrivial knots
Pincus for linear chains under traction force also hold forwas derived. Although the model is crude and could not even
knotted type polymers. That is, the elastic response dependsstinguish different nontrivial knots, its prediction agrees
only on the relative deviation of the knot from its unde- very well quantitatively for the trivial knot. Even for the
formed dimension, and a scaling law in the form of E4).  nontrivial trefoil, this simple model still gives reasonable
holds. In particular, the knot size scales @)~R2f at  predictions when compared to the simulation data. For knot-
weak tension forces, and dRONRgi(llv)fl for strong ted polymers of the same length, the deformation decreases
forces withRe~N"p~*5 One expects these scaling resultsas the complexity of the knots increases at the same stretch-
would be valid as long as the knot is far from the tight knoting force. More complex knots are stiffer. We have also ob-
limit, or provided that the chain is long enough so that uni-served that at very strong forces, the crossings tend to seg-
versal scaling results apply. On the other hand, significantegate into a small region of the knot structure. We hope our
bond stretching occurs under extremely strong forces 0f€SU|tS can stimulate further experimental and theoretical
when the knot is tight; the elastic response depends on th@udies on knotted molecules.

particular interaction potential between the monomers, and

hence the_ deformatiqn behavior becomes model-dependent ACKNOWLEDGMENTS
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